Intestinal Autophagy Improves Healthspan and Longevity in C. elegans during Dietary Restriction
نویسندگان
چکیده
Dietary restriction (DR) is a dietary regimen that extends lifespan in many organisms. One mechanism contributing to the conserved effect of DR on longevity is the cellular recycling process autophagy, which is induced in response to nutrient scarcity and increases sequestration of cytosolic material into double-membrane autophagosomes for degradation in the lysosome. Although autophagy plays a direct role in DR-mediated lifespan extension in the nematode Caenorhabditis elegans, the contribution of autophagy in individual tissues remains unclear. In this study, we show a critical role for autophagy in the intestine, a major metabolic tissue, to ensure lifespan extension of dietary-restricted eat-2 mutants. The intestine of eat-2 mutants has an enlarged lysosomal compartment and flux assays indicate increased turnover of autophagosomes, consistent with an induction of autophagy in this tissue. This increase in intestinal autophagy may underlie the improved intestinal integrity we observe in eat-2 mutants, since whole-body and intestinal-specific inhibition of autophagy in eat-2 mutants greatly impairs the intestinal barrier function. Interestingly, intestinal-specific inhibition of autophagy in eat-2 mutants leads to a decrease in motility with age, alluding to a potential cell non-autonomous role for autophagy in the intestine. Collectively, these results highlight important functions for autophagy in the intestine of dietary-restricted C. elegans.
منابع مشابه
Correction: Intestinal Autophagy Improves Healthspan and Longevity in C. elegans During Dietary Restriction
[This corrects the article DOI: 10.1371/journal.pgen.1006135.].
متن کاملMetformin Induces a Dietary Restriction–Like State and the Oxidative Stress Response to Extend C. elegans Healthspan via AMPK, LKB1, and SKN-1
Metformin, a biguanide drug commonly used to treat type-2 diabetes, has been noted to extend healthspan of nondiabetic mice, but this outcome, and the molecular mechanisms that underlie it, have received relatively little experimental attention. To develop a genetic model for study of biguanide effects on healthspan, we investigated metformin impact on aging Caenorhabditis elegans. We found tha...
متن کاملMonitoring the role of autophagy in C. elegans aging.
Autophagy plays crucial roles in many biological processes, and recent research points to a possibly conserved role for autophagy in the process of organismal aging. Experiments in the nematode C. elegans suggest that autophagy may be required specifically for longevity pathways that are regulated by environmental signals. Known longevity genes can be assigned to four major longevity pathways/p...
متن کاملA Role for Autophagy in the Extension of Lifespan by Dietary Restriction in C. elegans
In many organisms, dietary restriction appears to extend lifespan, at least in part, by down-regulating the nutrient-sensor TOR (Target Of Rapamycin). TOR inhibition elicits autophagy, the large-scale recycling of cytoplasmic macromolecules and organelles. In this study, we asked whether autophagy might contribute to the lifespan extension induced by dietary restriction in C. elegans. We find t...
متن کاملThe cell non-autonomous function of ATG-18 is essential for neuroendocrine regulation of Caenorhabditis elegans lifespan
Dietary restriction (DR) and reduced insulin growth factor (IGF) signaling extend lifespan in Caenorhabditis elegans and other eukaryotic organisms. Autophagy, an evolutionarily conserved lysosomal degradation pathway, has emerged as a central pathway regulated by various longevity signals including DR and IGF signaling in promoting longevity in a variety of eukaryotic organisms. However, the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2016